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In  this paper an attempt is made to explain the period-doubling of wind-generated 
gravity-capillary waves as observed in the experiment of Choi (1977). It is conjectured 
that period-doubling is closely related to the phenomenon of second-harmonic 
resonance. In order to obtain a simple dynamical model, results of McGoldrick (1970) 
and Simmons (1969) are extended to include the effect of wind input and shear in 
the current. For pure gravity-capillary waves (no wind, no current) the condition for 
energy transfer from the second harmonic to the fundamental wave of Chen & 
Saffman (1979) is recovered. We also discuss the effect of wind and we find that wind 
input gives rise to a very sudden period-doubling. Qualitative agreement with 
experiment is obtained. 

1. Introduction 
Currently there is much interest in the evolution of gravity-capillary waves 

because of the promising remote-sensing technique, which can provide information 
about surface waves with a wavelength of the order 'of M O c m ,  i.e. in the 
gravity-capillary range. Also, when studying the generation of water waves by wind, 
it is well known that gravity-capillary waves with a wavelength of the order of 1 cm 
are the first waves to be generated because they have the largest growth rate. 

In  this paper we shall concentrate on some aspects of the initial evolution of 
gravity-capillary waves. We first briefly discuss some experimental results obtained 
by Choi (1977). For a brief account of these results see also Ramamonjiarisoa, 
Baldy & Choi (1979). Choi investigated the evolution of gravity-capillary waves in 
the presence of wind. In  particular, the dependence of the wave spectrum as a 
function of fetch was determined and at a certain fetch a rather sudden transition 
of the peak frequency of the spectrum to half its value was observed. We term this 
period-doubling. Chen & Saffman (1979) suggested that this period-doubling is 
related to the phenomenon of second-harmonic resonance. They considered pure 
gravity-capillary waves only, i.e. the effects of wind input, viscous dissipation and 
shear in the water current were disregarded. Chen & Saffman found that around the 
wavenumber 2k = (Bg/T)t, where g is the acceleration due to gravity and T is the 
surface tension divided by the water density, two types of waves are possible, namely 
a pure wave with wavenumber 2k and a combination wave with wavenumber 2k and 
k. However, the combination wave can only occur if the wave height h of the 2k-wave 
satisfies the condition 

t Permanent address: KNMI, De Bilt, Holland. 
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This condition holds true for k2Tlg x t ,  i.e. for small-amplitude waves; and for 
large-amplitude waves Chen & Saffman (1980) extended this result numerically. All 
these calculations were performed for steady-state waves. 

As we are interested in the dependence of the amplitude or energy of the 
gravity-capillary waves on fetch a dynamical model is needed. Starting from results 
of Phillips (1960), McGoldrick (1965) derived the evolution equation for a resonant 
triad of waves assuming potential flow and no air flow or current. For the special case 
of second-harmonic resonance McGoldrick showed experimentally that at resonance 
a wave with wavenumber k cannot exist and that energy is transferred from the 
fundamental with wavenumber k to its second harmonic. The measurements showed 
the spatial evolution of the amplitudes of the interacting modes from their generation 
at the wavemaker to their extinction through viscous dissipation, in good agreement 
with his theoretical results. 

We, on the other hand, are interested in the opposite case where gravity-capillary 
waves are being generated near the second harmonic by wind. (This possibility was 
also suggested by Simmons (1969) who derived the equations for the resonant triads 
using Whitham’s variational principle.) The question then is if and under what 
conditions, i.e. what value of the fetch, a transfer of energy occurs from the second 
harmonic to the fundamental mode (period-doubling). In order to answer this 
question we extended the results of McGoldrick (1970) and Simmons (1969) to include 
effects of shear in the airflow (giving growth of the gravity-capillary waves) and 
effects of shear in the surface drift current in the evolution equations for the case 
of second-harmonic resonance. 

We study some of the properties of this simple dynamical model for period-doubling. 
For pure gravity-capillary waves and no time dependence of the amplitudes of the 
second-harmonic and the fundamental mode, the fetch dependence of the amplitudes 
can be obtained in terms of elliptic functions. The condition for period-doubling (1)  
is rediscovered. Next, we shall discuss the effect of wind by studying the stability 
of a spatially growing second-harmonic to a small-amplitude fundamental mode.? 
The period-doubling condition (1) is affected by the addition of an air flow and shear 
in the current as both are as important as nonlinearity. If the period-doubling 
condition is satisfied wind input through nonlinearity gives rise to a bi-exponential 
growth of the amplitude of the fundamental mode. A very rapid transfer of 
energy from the second harmonic to the fundamental mode is therefore possible, 
qualitatively in agreement with the observations of Choi (1977). 

Qualitative comparison of our theoretical results with the observations of Choi 
(1977) gives good agreement. However, to check the range of validity of this 
dynamical model for period-doubling a comparison with experiments, performed at 
different wind speeds, has to be made as Choi (1977) reported only results for one 
wind speed. 

2. Choi’s experiment 
Choi (1977) investigated the generation of gravity-capillary waves by wind in the 

$-scale wind tunnel described by Favre & Coantic (1974). The wind-wave tank, 
schematically depicted in figure 1 ,  is 52 cm wide, 8.65 m in length and 54 cm in height, 

t Although perhaps it would be more appropriate to call the wave with the most energy the 
fundamental we shall, in agreement with McGoldrick (1965) and Simmons (1969), call the wave 
with the smallest wavenumber the fundamental and the wave with twice its wavenumber the 
second harmonic. 
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FIGURE 1 .  Schematic of Choi’s experiment. 

FIGURE 2. Evolution of frequency spectrum aa function of fetch. 

containing water of 26 cm depth. At the beginning of this wind-wave tank a rigid 
plate, 1.60 m long and 52 cm wide, was placed in order to (a) suppress parasitic 
disturbances in the air and water, and (b) make sure that the wavelets were being 
generated by a fully turbulent wind. The experiment was performed at a wind speed 
of 5 m/s. 

About one minute after switching on the air flow a steady state was achieved. Choi 
measured among other things the air velocity as a function of height and fetch, the 
water current aa a function of depth and fetch and also the fetch dependence of the 
frequency spectrum S(f) of the gravity-capillary waves was determined (figure 2). 
The wave variance E = jdfS(f) as a function of fetch is given in figure 3. 

The first wavelets were observed at  a fetch of 70cm. These wind-generated 
wavelets have a very narrow spectrum with a peak frequency at 16.7 Hz. The waves 
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FIGURE 3. The fetch dependence of the total wave energy density. 

seem to grow up to a fetch x = 100 cm according to the linear theory of the generation 
of waves by wind (Kawai 1979) although around 2 = 85 cm already some wave 
energy at half the peak frequency (fx 8 Hz) is present. Between x = 100 cm and 
150 cm the spectrum broadens considerably, accompanied by a decrease in wave 
variance (cf. figure 3). This decrease in wave variance was attributed by Choi to the 
fact that in this region advection of wave energy in the transverse direction (i.e. 
perpendicular to the wind direction) becomes important, i.e. the gravity-capillary 
waves start to occupy the whole water surface (see also our discussion). Between 
,W - 1 K n  nm omrl 99n nm thn- i o  n n n n o i r l n r o h l n  ohifi in tho n o o L  fvnfinnnnv nf tho * - I”” U‘ll C U l l U  YY” U l l l  V I l U l U  10 c.l UWII0 IL l” Ic . lV .V “ L l l l U  111 Val”  yuurn LlvyUUlluJ W I  Y‘l” 

spectrum to half its initial value. We note, however, that this process already starts 
at  x x 85 cm. 

It was conjectured by Chen & Saffman (1979) that this period-doubling phenomenon 
is related to second-harmonic resonance. Second-harmonic resonance occurs if the 
frequency of the free wave at 2k (a free wave is a wave that obeys a dispersion relation 
o = w ( k ) )  is twice the frequency of the free wave at  wavenumber k ,  i.e. 

w(2k)  = 2w(k) .  ( 2 )  

Whenever this condition is met there is a strong nonlinear interaction between the 
second harmonic of the free wave a t  wavenumber k and the free wave a t  2k. Of 
course, in general it is unlikely that the wind generates the wave with wavenumber 
2k that satisfies condition ( 2 )  so there will be a frequency mismatch. In the case of 
a small but finite mismatch in the frequency the nonlinear interaction is nearly 
resonant so that the energy transfer from the second-harmonic to the fundamental 
wave is less effective. 

3. A simple, one-dimensional model for period-doubling 
In this section we present approximate evolution equations for gravity-capillary 

waves in the presence of wind satisfying the conditions for second-harmonic 
resonance. Also, the effect of small but finite frequency mismatch is considered. This 
nimnlp nnn-dimnnninnn.1 mndel in iiint. R nnmhinat,inn of reniilt,n of MaCTnldriak I 1  970) 
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(dashed-dotted line). 

and Simmons (1969), for second-harmonic resonance, and of Kawai (1979) and van 
Gastel, Janssen & Komen (1985) for the effect of a shear flow in air and water. The 
only novel feature is that in the coupling coefficients, measuring the strength of 
nonlinearity, the effect of shear in the current is taken into account. 

A formal method to obtain the evolution equations for gravity-capillary waves in 
the presence of a shear flow in air and water is the following : we assume incompressible 
flow governed by the Navier-Stokes equations, the only body force being the 
gravitational force. The boundary conditions express the vanishing of the wave- 
induced disturbances at large height and depth and the continuity of velocity and 
normal and tangential stress at the interface of air and water. We include the effect 
of surface tension because the wavelength of the waves is small. The equilibrium 
consists of a flat interface and plane parallel flows in air and water that depend on 
height (see figure 4). 

It is assumed that the turbulence in the air gives rise to a linear-logarithmic profile 
as sketched in figure 4. The effect of the turbulence on the waves is however neglected 
(quasi-laminar approximation). The water motion is assumed to be laminar. The 
water current will be however time dependent, as was for example noted by Kawai 
(1979). The timescale over which the current varies appreciably is assumed to be 
much longer than a typical period of the gravity-capillary waves so that for our 
purposes the current can be regarded as time independent. The waves are regarded 
as a small perturbation of the equilibrium so that the wave steepness 8 = kA (where 
A is the amplitude of the surface elevation) is small. In  addition, the ratio of air 
density to water density r = p,/p, is small and we assume that the Reynolds 
numbers in air and water, u*,/kv, and u,,/kv, respectively (where u* is the friction 
velocity and v is the viscosity and the subscripts a end w denote air and water 
respectively) are large. This suggests that one can solve the problem of second- 
harmonic resonance in the presence of wind by a perturbation method. In  fact, for 
infinitesimal waves (kA + O ) ,  van Gastel et al. (1985) solved the resulting eigenvalue 
problem (e.g. the Orr-Sommerfeld equations plus boundary conditions) in a pertur- 
bative manner. The phase speed and growth rate of the gravity-apillary waves was 
in good agreement with the numerical results of Kawai (1979). 

Here we extend this approach by allowing for finite-amplitude effects which we 
assume to be of the same order as the growth of the waves by wind input. 

At lowest order, i.e. s+O, r+O and no viscosity, the problem to study is one of 
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FIQURE 5. The phase velocity c as a function of wavenumber for A = 2.64 crn-l. - , ‘exact’ 
(Kawai 1979; van Caste1 et al. 1985); 0,  equation (7) with linear shear current. For comparison 
we have also shown the phase velocity for pure gravity-capillary waves (-----). 

gravity-capillary waves on a shear current. As a result one has to solve Rayleigh’s 
equation for the perturbed stream function subject to the boundary condition that 
the pressure be continuous at z = 0 (see the Appendix for details). A good 
approximation for the current profile is (van Gastel et al. 1985) 

Uw = U, exphz ( z  < 0), (3) 

pava u; = p w v w  u; (z  = 0). (4) 

where h follows from the requirement that the tangential stress be continuous at the 
interface, or 

Here, a prime denotes differentiation of an equilibrium quantity with respect to z. 
Since the left-hand side of (4) is just the stress 7, = pa u:, in the boundary layer one 
ob tains 

( 5 )  A = -  .%a 

vw uo * 

For the exponential current profile (3) one may solve the Rayleigh equation in terms 
of hypergeometric functions, but the resulting dispersion relation can only be solved 
numerically. A great simplification is achieved if one takes, instead of (3), the linear 
current profile 

This profile was also used by Choi (1977). Then, at lowest order, the dispersion 
relation becomes 

u, = V,(l+Az). (6) 
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where W = Uo-c ,  and c is the phase speed w o / k .  The linear-shear-current approxi- 
mation gives a good approximation to the exact result for waves that are not too long; 
see figure 5 where we have compared (7) with the exact result as obtained by van 
Gastel et al. (1985). Choi (1977) found a good agreement between (7) and his 
experimental results (see also Ramamonjiarisoa et al. 1978). 

To next order i t  is assumed that the effects of finite amplitude, wind and viscosity 
are equally important. Let the complex amplitude of the surface elevation of the 
fundamental wave (k , )  be denoted by A ,  and that of its second harmonic by A,. We 
choose the wavenumber k ,  such that the condition of second-harmonic resonance is 
satisfied, i.e. w(2k1)  = 2w(k , ) ,  where w follows from the dispersion relation (7). Note 
that if the phase speed as a function of wavenumber k has a minimum then there 
always is second-harmonic resonance as ( 2 )  implies c (k , )  = c(2k1) (cf. figure 5 ) .  Then, 
for the linear shear current profile, the evolution equations for the amplitudes A,  and 
A,  become 

where Vgi = aw/aki is the group velocity of the ith mode and 

Here, G = 1 -2,u1+2,4 and ,u, = U&(0) /k l  W, measures the effect of shear in the 
current. The growth rates y1 and y, represent the effects of shear in the air flow and 
viscous dissipation in water. For a linear-logarithmic wind profile y1 and y, are given 
by the numerical results of Kawai (1979); see also van Gastel et al. (1985) where 
growth of the waves is determined through a perturbation analysis. An example of 
a growth-rate curve y as function of the wavenumber is presented in figure 6. 

The derivation of the coupling coefficients a and ~3 is given in the Appendix. As 
a che,ck on the expressions for a and /3 we note that in the case of no shear (,ul = 0) 
the coupling coefficients are independent of the magnitude of the current. This is just 
what one would expect as the nonlinear interaction is invariant under Galilei 
transformations. 

It is also of interest to remark that the nonlinear interactions in (8) conserve wave 
energy and momentum. Apart from a constant the energy of a mode is given by? 

where D = kW2- Ui W-c: k ,  c: = g / k +  kT and D = 0 gives the dispersion relation 
(7). Then, one obtains w U; 

E ,  = - 2  - w(1-$p)lAk12, ,U = 
9 

and it it a simple matter to show that the total energy E = &Ek is conserved by 
the nonlinear interaction. A similar assertion holds for the wave momentum 

We finally note that in the limit of no current one recovers the results of McGoldrick 

Equations (8) describe the evolution of gravity-capillary waves at or near 

t This follows from Whitham's (1974) averaged variational principle, where L = DIfik('+ O(IA#) 

Mk = Ek/C(k).  

and Simmons on second-harmonic resonance. 

and Ek = w(aL/aw) - L. 
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FIGURE 6. The growth rate of the energy of the waves B = 27 as a function of wavenumber for 
u + ~  = 21.4 cm/s, U,, = 9.8 cm/s. We have also indicated the wavenumber where the initial 
wavelets in Choi's experiment are being generated. 

second-harmonic resonance. As the amplitudes A, and A, are assumed to be slowly 
varying in time and space (see the Appendix), the frequency mismatch is only allowed 
to be of the order of the wave steepness E .  To incorporate such a frequency mismatch 
explicitly in our simple model for period-doubling we consider the boundary-value 
problem that at z = 0 one excites a wave with frequency slightly off its resonant value, 

(9) or 

where 6 is the frequency mismatch. 

w = w,(1+6), 

Then, the boundary conditions for A, and A, become 

I A,(O, t )  = A,, exp [- iaw, t ] ,  

A,(o, t )  = A,, exp [- 2i~w, t ] .  

It is then tempting to transform A, 9 = 1,2) according to A, = A, exp [i(K, z-j6wl t ) ]  
where K, = jh,/ V,,, to obtain for A, the following evolution equations : 

with boundary conditions A,(O, t )  = A,, and A,(O, t )  = A,,. Here, we have dropped 
the carets and 
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is a measure for the frequency mismatch. For finite frequency mismatch the coupling 
coefficients between the second harmonic and the fundamental becomes periodic in 
z thereby making the interaction less effective. 

In passing we remark that McGoldrick (1972) also considered the effect of finite 
N, but he derived (1 1) from a simplified one-dimensional model. Also, calculations 
on third-harmonic resonance were reported and qualitative agreement between the 
theoretical results and measurements on the amplitude response as a function of 
frequency mismatch was obtained. 

In the rest of this paper we shall discuss some of the properties of our simple model 
for second-harmonic resonance (or period-doubling). We are especially interested in 
the fetch dependence of A, and A,, i.e. we assume @/at) A, = (a/at)A, = 0 in (11). 

3.1. No Wind input 
If there is no wind input then y, = ye = 0 and the resulting equations may be solved 
in terms of elliptic functions. This has already been noted by McGoldrick (1972) who 
followed Bretherton (1964), so we discuss this case only briefly. Introducing the 

(12) 
action density fluxes V 

$* = $ IA*I2, at = (a,/-% 

one obtains from (11) in the steady state 

(& 91)p+Y(91) = 0 
where the potential Y ,  

depends on two conserved quantities, namely the total action density flux 9, 
9, = q51 + 9, = const. (15) 

and a quantity related to ‘angular momentum’, 

L = !jN$, + Im (iA, AF2 eiNs) = const. 

As we are interested in understanding Choi’s experiment where one initially observes 
a large second harmonic and a small fundamental wave, we take as boundary 

(16) 
conditions 

and for simplicity we choose L=;N$,(O).  Then, the potential rtr(q5,) may be 

W91) = -91(9+-91) ($1-9-)l (17) 
approximated by 

5 = 0: A,  = A,,, A, = A,,, A,, Q A,,, 

where 9* = 3 9 0 - A  +~(90-~)2+~491(o)~~1~ 

and 

The behaviour of the solution 9, as a function of x may be inferred from the form 
of the potential Y ,  of course realizing that Y($,) < 0 in order that d#,/dx be real. 
The form of the potential is given in figure 7 and from thia figure onc infcm that thcrc 
are two cases to be distinguished. If 9, < A ,  then nothing interesting happens as 9, 
remains of the order of its initial value. On the other hand if 9, > A one finds periodic 
solutions with a maximum amplitude 

(18) 

given by 

91ln*x = 9, = 9 0 - A .  
in Y1.M I?! 
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FIGURE 7. The potential V($)  of equation (17) for the stable ($o < A )  and unstable caae 
($0  ' 4. 

Hence, if the condition 
d o > A ,  or A 2 0 2  1;: -*N)  I (19) 

is satisfied the amplitude of the fundamental wave may become appreciable. For pure 
gravity-capillary waves, condition ( 19) simply corresponds to the bifurcation 
condition (1) given by Chen & Saffman. To see this, we note that by (16) do x q5,(0) 
and that the wave height h = 4A,,. Thus, the amplitude of the second harmonic must 
be sufficiently large to overcome the stabilizing effect of finite frequency mismatch. 
And if so, then an appreciable amplitude of the fundamental wave is to be found, 
especially if q50 >> A as then almost all the energy of the second harmonic is transferred 
to the fundamental. In  the latter event we expect a significant change in the position 
of the peak of the spectrum to half its initial value (period-doubling). 

3.2. Effect of wind input 

For wind blowing over gravity-capillary waves the appropriate set of equations 
becomes 

(20) I a 
gi ax 

a 
g2 ax 

V - A, = iaA: A, eiN5+y1 A,, 

V - A, = i/3Af e-iNz + y2 A,, 

where, again, N = 260,( 1/  Vg, - 1/  V,,). We are interested in the effect of wind input 
on the condition for period-doubling (19). To that end, keeping in mind Choi's 
experiment, we study the linear stability of the solution 

so we consider the stability of a growing second harmonic as a result of wind. 
Linearizing around the solution (21) one obtains the following second-order differential 
equation for the perturbation A?) : 
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where 
f = [ a A 2 0 e x P ( ~ x ) / V g l ~ .  

This equation can be solved in terms of Bessel functions Z,, 

A?) = exp 2 x f*Z,(/@), (23) 
(;gl ) 

where B = i Vg2/y2, a = t( 1 + iNVg2/y2) and v = &a. This is still a rather complicated 
expression for the fetch dependence of the amplitude of the fundamental wave. There 
is, however, one special case where the solution is simple, namely when there is no 
frequency mismatch, N = 0. Then, v = a = ?j and for special boundary conditions the 
solution reads 

A!’) = ~,,exp{$x+- ( e x p A  x- I)} ( N  = 0). 
Vg1 Y2 V g 2  

Apart from exponential growth due to wind, we note that the nonlinear coupling 
between the fundamental and its second harmonic gives rise to bi-exponential 
growth. This suggests a very sudden transition of the position of the peak of the 
spectrum to half its initial value. 

The case of finite frequency mismatch (N + 0) is harder to analyse, although some 
qualitative insight can be gained for small growth rate y2, i.e. y,/ V N 4 1. Thus, 
the order v of the Bessel function 2, is large and one can use some of its asymptotic 
properties. One may then distinguish three regions. With z = /?fk these regions are 
1%) 4 Ivl, lzl x IvI and lzl %- (vl. Notice that in the limit y2+0 the condition IzI = IvI just 
corresponds to the period-doubling condition (19) for the case without wind input. 

The behaviour of the solution in these three regions is as follows. At  the beginning 
of the wave tank (121 4 Ivl), apart from growth by wind, nothing happens. In  the 
turning-point region lzl x Ivl an asymptotic representation for Z,, (23), valid for large 
v, is 

Z,(z) - - exp { i[$ - v( w - $49 - arctan w)]} Hi2)($vw3) + 0 - , 
where w = [(z2/+’) - 114 and HI2) is a Hankel function (cf. Gradshteyn & Ryzhik 1965, 
p. 964). We are interested i i  the transition from an exponentially damped to an 
exponentially growing solution. We anticipate that this will occur for IwI = O(1). As 
v is large one can then use the following asymptotic expression for Hi2):  

g ? 

(ItJ (25) 
W 

4 3  

where y = ivw3. The transition point then follows from the requirement that 
Im ( y t )  = 0, or in the limit of small y2, 

where A,, = A,, exp (y2xt/ Vg2).  Equation (27) shows the effect of wind input on the 
period-doubling condition (compare with (19)). Note that it is possible to use (26) 
as at the turning point Re@) = O(v)  = O( V g 2 / y 2 N )  is large since y2+0. Finally, in 
the region lzl >> IuI one can use the asymptotic expression for 2, and the solution A?) 
becomes Ix + CXI , v fixed) 

18-2 
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hence for large x one again has bi-exponential growth. Clearly, in this last region 
nonlinear effects will become important and may reduce the amplitude of the second 
harmonic. There is, however, a strong indication of a sudden transition of the peak 
frequency of the spectrum to half its initial value. 

To summarize our results on the effect of wind input we note that the condition 
for period-doubling is affected by the inclusion of growth by wind (see (27)), and the 
combined effect of nonlinearity and growth by wind gives rise to a very fast growth 
of the fundamental wave. Apart from this there are also indirect effects on the 
phenomenon of period-doubling as in the presence of wind a non-uniform current 
develops. Shear in the current affects the group velocity and the coupling coefficients 
a and 8. 

4. Application to Choi's experiment 
The parameters we need from Choi's experiment are the following. A wind velocity 

U, = 5 m/s corresponds to a friction velocity u*, = 20 cm/s. Using 
p,/p, = 1.22 x lod3, v, = 0.0114, and the measured value of the current at the 
surface U,(O) = 15 cm/s one finds from (5) that the inverse shear length of the 
current A = 2.85 cm-'. In addition, we take g = 981 cm s - ~  and T = 74 dyn/cm. 

Let us first consider the condition for second-harmonic resonance in the presence 
of shear in the current. With the dispersion relation (7) the condition for second- 
harmonic resonance to occur (i.e. 24k,) = w(2k1)) results in the following quartic 
equation for the dimensionless wavenumber 1 = k,(T/g): : 

In the absence of shear (A = 0) one finds 1 = d and this is the resonance condition 
for pure gravity-capillary waves. For small but finite A the dimensionless 
wavenumber is approximately given by 

This shows that the effect of shear is to decrease the wavenumber k, (this can also 
be inferred from figure 3). For the parameters of Choi's experiment we find by 
iteration of (29), using (30) as a starting point, k, = 1.31 cm-', whereas in the absence 
of shear one would obtain k, = 2.57 cm-', hence the effect of shear is a factor of two. 
Using k, = 1.31 cm-', the frequency of the fundamentalf, = 6.68 Hz and that of the 
second harmonic f 2  = 13.36. As in Choi's experiment waves are being generated a t  
f = 16.7 Hz, the frequency mismatch 6 =f/f2- 1 = 0.25. With k, = 1.31 one finds 
that the wavenumber of the second harmonic is 2.62 cm-l and as may be inferred 
from figure 6 this just corresponds to the maximum of the wave growth curve. In  
other words, waves with wavenumber around k = 2.62 are the first that are being 
generated so that the stability calculations of 33.2 make sense. In order to evaluate 
the period-doubling condition (27) we need V,, (=  30.6 cm/s), V,, (=  34 cm/s), a 
(= - 100.0 cm-l s-l) and we take ye = 1 s-l. The result is that, according to (27), one 
finds that transition from fz to f, starts to occur when the wave height h, = 4A2 
satisfies 

h, 3 0.053 cm. (31) 
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Choi measured the wave variance E related to the surface elevation. Then, E2 = $hi 
so that in terms of wave variance the condition for transition becomes 
E, 3 3.5 x lo-* ma. According to figure 3 one should therefore expect that transition 
occurs around a fetch x = 80 cm. The detailed spectra of figure 2 showed that waves 
at half the peak frequency are being generated at a fetch x = 85 cm. There is, 
therefore, a reasonable agreement between this experiment and our simple dynamical 
model. 

5. Conclusions 
We have obtained a simple, one-dimensional model for the period-doubling of 

gravity-capillary waves. The model includes the growth of the waves by wind, 
viscous dissipation and the nonlinear interaction between the second harmonic and 
the fundamental waves (including the effect of shear in the current). The condition 
for period-doubling (27) seems to be in reasonable agreement with the observations 
of Choi. We add to this that dramatic changes from the second harmonic to the 
fundamental wave are to be expected only if the wave height is much larger than 
the one given by (27). The transition, however, occurs rather suddenly as growth by 
wind combined with the nonlinear interaction gives a bi-exponential growth of the 
fundamental wave. Finally, one might wonder whether the phenomenon of period- 
doubling as observed by Choi is just a happy coincidence because waves have to be 
generated by wind with wavenumbers that (nearly) satisfy the condition for 
second-harmonic resonance. In  other words, if the frequency mismatch S becomes too 
large the transfer of energy from the second-harmonic to the fundamental wave is 
quenched. This situation might happen for large wind speeds as the maximum of the 
wind input shifts to higher wavenumbers whereas the minimum of the phase velocity 
of the waves shifts to lower wavenumbers (Kawai 1979). However, conditions might 
then become favourable for third-harmonic resonance. Hence, for large wind speeds 
one might expect to observe period-tripling instead of period-doubling. It would 
therefore be interesting to perform experiments at different wind speeds in order to 
determine the range of validity of our dynamical model for period-doubling and to 
see whether for large wind speeds period-tripling occurs. We note, however, that 
third-harmonic resonance is rather weak and therefore is presumably effective over 
a rather long fetch, hence a long wave tank is needed. 
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Appendix 
In  this Appendix we briefly present the derivation of the equations for second- 

harmonic resonance in the presence of a non-uniform current. In this derivation we 
neglect viscosity and the effect of air flow and we consider one-dimensional 
propagation only. 

With q the surface elevation, u = (u, 0, w) the velocity, u = Q x $with $ the stream 
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function and p ,  the dynamic pressure, the Euler equations plus boundary conditions 
become 

Expanding the boundary conditions to second order one has 

For z+- 00 we require that the solutions decay sufficiently rapidly. The steady state 
is one in which the current U,  depends only on z so that U,(z) = -a$,/az. We intend 
to seek small-amplitude solutions (with wave steepness E) around this eteady state. 
To that end we introduce the expansions 

$ = $0+E+1+"$2+.. . ,  p ,  = p l + E p e + . )  

7 = O+E?71+E272+..., I 
J a a  a a a  a 

ii = a7, a7, ax ax, ax, -++-+... ; -- --+ E - +  ... 
where 7l = E1 t and x1 = d x  (1 = 0, 1,2,3).  Substituting this expansion in (A I ) ,  (A 2) 
we obtain a hierarchy of equations. Only the first- and second-order approximations 
are considered in this Appendix. 

A. 1.  First-order theory 
At first order the equations for the stream function $l and and the pressure p ,  
become 

where A, = (a*//as:) + ( P / a z 2 )  and a prime denotes differentiation with respect to z. 
We only consider two modes, i.e. 

2 

i-1 
+l = X B,f,(z)  expiBi+c.c., 8, = k t x , - ~ 1 7 0 ,  (A 6) 

that satisfy the condition for second-harmonic resonance, i.e. 28, = 8,. Substitution 
of (A 6) into (A 5a) gives Rayleigh's equation for f&) 

ft(0) = 1, ft(-O0)+0, 

where W, = U,-c,, U ,  = -$; and c, = wi/k, .  
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The boundary conditions to first order read 

Writing the surface elevation as 

7, = z A,  e'"+c.c. 
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one finds from (A 8a)  A i = S  (A 10) w, 
Then, by means of (A 5 b )  and (A 86) one arrives a t  thc dispersion rclittion 

f ; ( O )  v- 15'; W, - k, c:, = 0, z = 0, (A 11) 

where cii = g / k , + k , T .  In  general this is a complicated dispersion relation its j; 
depends on W, as well. Only in the simple case of a linear current profile a simple 
dispersion relation results. Then, U" = 0 and f, = exp k, z. The dispcrsion relation is 
then given by 

This concludes the first-order theory 

A.2. Second-order theory 
To second order the equation for the stream function $, becomes ( z  < 0) 

where A. = (a2/az2)+ (a2/axi) and A, = 2(a2/ax,2xl). The pressure equation to 
second order reads ( z  < 0) 

The equation for the surface elevation becomes ( z  = 0) 

and finally the boundary condition on the pressure becomes ( z  = 0) 
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In  order to solve for +,, p, and 7, one substitutes the expressions for the first-order 
quantities such as +, and 7, into (A 13)-(A 16). One then fhds that, for example, 
products of first-order quantities give rise to secularity because we are at second- 
harmonic resonance. In order to prevent secularity the amplitudes A, and A, have 
to satisfy certain evolution equations on the slow time and spatial scale. For example 
for B, one finds 

kl d CiZ + A 2  >Vf;-- ~ f , ' 2 + W l ~ ( W l f ~ - W ~ f l ) + - ( k l U & - 2 k l  W,j,')] = 0 ,  z = O ,  [" k z  k2 W, 

where $';,(O) is a rather complicated expression involving integrals of the solution 
of the Rayleigh equation : 

+i,(0)=71 l o  
ik --oo 

A great simplification is achieved by assuming a linear current profile and the final 
result is given in (8). 
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